
1.  Introduction
The African continent sustains a population of 1.2 billion people and some of the most unique and diverse 
ecosystems on Earth. Africa's future is made uncertain by climate model projections of severe anthropo-
genic warming over the next several decades and the hydroclimatic change that may accompany rising 
temperatures (IPCC, 2013). As one example, regional droughts in Africa have displaced millions of people 
and sparked outbreaks of civil violence in multiple countries (Detges,  2016; Linke et  al.,  2018; Tierney 
et al., 2015; von Uexkull, 2014). Given the myriad geopolitical and climatic risks that will accompany cli-
mate change impacts on Africa's developing nations, it is crucial to provide robust constraints on climate 
model projections of future warming in Africa.

To this end, reconstructions of climate change in Africa spanning major changes in boundary conditions 
(i.e., mean state changes in response to external forcing scenarios) can bolster our understanding of Af-
rican climate dynamics, providing constraints on the rates and patterns of temperature and precipitation 
changes, as well as providing insight toward the drivers of those changes. Globally, reconstructions of the 
last glacial maximum (Waelbroeck et al., 2009) and others spanning the last 20 kyr (Clark et al., 2012) show 
large changes in mean climate dominated by deglacial warming. This warming was initiated by rising sum-
mer insolation in the northern hemisphere and globally synchronized by rising greenhouse gases (GHGs; 
Alley & Clark, 1999; Ruddiman, 2003; Shakun & Carlson, 2010; Figure 1), and was further punctuated by 
abrupt climate change events including Heinrich 1 and the Younger Dryas (Alley, 2000; Shakun & Carl-
son, 2010). While these and other studies document global and high-latitude climate changes on centen-
nial-millennial timescales, temperature reconstructions from the terrestrial tropics are sparse. In contrast 
to the robust body of work constraining hydroclimate changes in Africa (e.g., Russell et al., 2014; Tierney 
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two notable reconstructions of East African temperatures to those predicted by Paleoclimate Model 
Intercomparison Project (PMIP3) and transient TraCE (Transient Climate Evolution) simulations, 
focusing on the Mid-Holocene (MH, 5–8 kyr B.P.). Reconstructions of tropical African temperature 
derived from lake sedimentary archives indicate 1–2.5°C of warming during the MH relative to the 20th 
century, but most climate models do not replicate the warming observed in these paleoclimate data. 
We investigate this discrepancy using a new lake proxy system model, with attention to the (potentially 
non-stationary) relationship between lake temperature and air temperature. We find amplified lake 
surface temperature changes compared to air temperature during the MH due to heightened seasonality 
and precessional forcing. Lacustrine processes account for some of the warming, and highlight how the 
lake heat budget leads to a rectification of the seasonal cycle; however, the simulated lake heating bias is 
insufficient to reconcile the full discrepancy between the models and the proxy-derived MH warming. We 
find further evidence of changes in mixing depth over time, potentially driven by changes in cloud cover 
and shortwave radiative fluxes penetrating the lake surface. This may confound interpretation for glycerol 
dialkyl glycerol tetraethers (GDGT) compounds which exist in the mixed layer, and suggests a need for 
independent constraints on mixed layer depth. This work provides a new interpretive framework for 
invaluable paleoclimate records of temperature changes over the African continent.
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et al., 2008, 2011, 2015, and many others), reconstructions of African temperature spanning large climate 
transitions are sparse, and thus much of Africa's thermal past remains opaque.

During the last decade, the application of organic geochemical temperature proxies based upon glycerol 
dialkyl glycerol tetraethers (GDGTs) in lake sediment cores has begun to fill in the gaps in reconstructions 
of African temperature change (Powers et al., 2010; Tierney, Russell, & Huang, 2010). In particular, recent 
work has demonstrated that multiple paleoclimate proxy records (GDGTs and others) show evidence for 
warmer temperatures during the Mid-Holocene (MH hereafter), ∼6 ka (Berke, Johnson, Werne, Schouten, 
& Sinninghe Damsté, 2012; Powers et al., 2005; Tierney et al., 2008). Reconstructions from multiple sites 
in Africa indicate warming of 1°C–3°C (Powers et al., 2005; Tierney et al., 2008) relative to the pre-indus-
trial (PI) period. Remarkably, this reconstructed period of African warming occurred when insolation and 
greenhouse gas forcing were near their Holocene minima (Figure 1) (Joos & Spahni, 2008). Thus, various 
hypotheses have been proposed to explain these observations, from teleconnections between tropical Africa 
and the high latitudes, to biases in the temperature proxies introduced by lake processes such as mixing. In-
deed, this large, sustained warming event (the largest after the glacial termination on the African continent) 
occurred near the end of the African Humid Period, potentially invoking feedbacks between temperature 
and the hydrological cycle (Gasse, 2000). To date, however, little attempt has been made to examine the 
energy transfers required to produce the reconstructed high temperatures during the MH.

What are the drivers and processes that could explain prolonged temperature change on a tropical land 
mass? Via joint evaluation of climate model simulations and proxy system biases, this work seeks to decon-
volve the relationships between reconstructed lake surface and GCM-simulated air temperature during the 
6 ka thermal maximum inferred from lake records. The GDGT proxy records lake temperature rather than 
the primary variable of interest (simulated by climate models): air temperature. The relationship between 
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Figure 1.  Climate forcing from the Last Glacial Maximum (LGM) to present, and African Temperature Evolution. 
Radiative forcing from atmospheric CO2, CH4, and N2O (blue), as calculated by Joos and Spahni (2008); and mean 
annual (solid orange) and MH calendar-corrected September-October-November (SON, red dashed) insolation at the 
equator, both in units of W/m2.
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lake and air temperatures is potentially nonstationary, and depends on lake heat budget and mixing regimes 
(Dee et al., 2018). To diagnose the dynamics and sensitivity of tropical African temperature changes during 
the MH warming event, this work pursues a novel, integrated data-model comparison study to evaluate air 
and lake temperatures over the last 10 kyr. Focusing on geochemical reconstructions of temperature from 
equatorial African lakes Malawi and Tanganyika (Powers et al., 2005; Tierney et al., 2008), reconstructions 
are compared to coupled general circulation model (GCM) simulations spanning 100 years of the mid-Hol-
ocene (MH), pre-industrial (PI) and the historical period (HIST). Note that MH and PI experiments are 
driven with an annual cycle of external forcing with boundary conditions consistent with the target time 
period, and do not span “real” time in years (similar to a control simulation). Full analysis of the multi-mod-
el spread is used to probe the mechanisms that control the rate and amplitude of simulated temperature 
changes in the MH. To quantify uncertainties related to the lake system impacts on proxy reconstructions 
(e.g., lake energy balance and temperature profile, mixing, sedimentation, and bioturbation), we apply a 
new Proxy System Model (PSM) for lakes to translate climate model output to lake surface temperature and 
mixing depth reconstructions and better quantify proxy system uncertainties (Dee et al., 2018). Comparison 
of geochemical proxy records with PSM output and transient and time-slice paleoclimate simulations from 
GCMs reveals large discrepancies between simulated and reconstructed temperatures; the potential causes 
of these discrepancies are evaluated in succession.

2.  Methods
2.1.  GDGT Temperature Reconstructions From African Lakes

The development and application of GDGTs temperature proxies have provided invaluable time-continu-
ous records of tropical continental temperature changes. GDGTs are membrane-spanning lipids that in-
clude isoprenoidal GDGTs (iGDGTs), produced by Thaumarchaeota and which comprise the TetraEther 
indeX of tetraethers with 86 carbon atoms (TEX86), and branched GDGTs (brGDGTs) thought to be pro-
duced by Acidobacteria that form the basis for the Methylation of Branched Tetraether (MBT) and the 
Cyclization of Branched Tetraether (CBT) MBT-CBT proxy (Schouten et al., 2002; Weijers et al., 2007). The 
proxies are based on the fact that microbes vary the number of ring structures and/or methyl branches in 
GDGT alkyl chains in response to environmental conditions, including temperature (Russell et al., 2018; 
Schouten et al., 2012). The use of TEX86 as a temperature proxy is restricted to large lakes because iGDGTs 
in small lakes tend to be contaminated with compounds from surrounding shoreline soils (Castañeda & 
Schouten, 2011; Powers et al., 2010).

GDGTs have been applied to multiple sites in Africa and have produced reproducible temperature histories 
(Figure 2), including reconstructions that span the MH. The two records we draw from in this paper are 
detailed in Table 1, and reconstructed temperature anomalies across the Holocene are shown in Figure 2b. 
We focus on these records in particular because both sites have well documented limnological data, and the 
Tanganyika record in particular is considered “emblematic” of climate changes in equatorial Africa (Powers 
et al., 2005; Tierney et al., 2008). In general, reconstructions from these two sites have yielded some of the 
most complete, time-continuous temperature records from the continental tropics (Berke, Johnson, Werne, 
Schouten, & Sinninghe Damsté, 2012; Castañeda & Schouten, 2011; Loomis et al., 2012, 2017; Morrissey 
et al., 2017; Powers et al., 2005; Tierney et al., 2008; Weijers et al., 2007).

Lake Malawi records a Holocene thermal maximum at 5 ka, followed by ∼ 1.5°C cooling to the PI (Fig-
ure 2b). Despite substantial differences between the two records during the earlier Holocene, a 60 ka record 
from Lake Tanganyika, SE Africa replicates many features of Lake Malawi, including the MH thermal max-
imum at 5 ka (Tierney et al., 2008). Both lakes indicate the MH was ∼1.5°C–2.5°C warmer than the PI and 
thus likely ∼1°C–2°C warmer than the historical period, considering anthropogenic warming. However, the 
reconstructed warming exhibits differences in terms of both timing and amplitude between the two records 
(e.g., Figure 2b., see evolution of reconstructions across the 6 ka time horizon). This could indicate that ei-
ther: (1) The climate signal is regionally heterogeneous, or (2) the lake system influences the amplitude and 
trajectory of the recorded warming. For (2), the lake proxy system model is able to partition the lake heat 
budget contribution to the overall reconstructed temperature signal, and evaluate seasonal biases. These 
tests are discussed in Section 3. Lake reconstruction sites are evaluated relative to climate model simula-
tions to diagnose large-scale temperature changes in Africa.
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2.2.  Climate Model Experiments

To diagnose the drivers of temperature changes across the MH inferred from lake sedimentary archives, we 
used climate model simulations from the Paleoclimate Modeling Intercomparison Project (PMIP3; Bracon-
not et al., 2012; Meinshausen et al., 2011). We employ PMIP3 models that ran MH, PI, and HIST simulations 
(n = 13, details in Table 2) in this work to examine African temperatures during the MH period compared to 
the historical period and the PI. PMIP3 MH and PI simulations are equilibrium simulations with uniform 
forcing from which we obtained 100 years of output; the historical simulations are transient runs spanning 
the period 1850–2005. We calculated both [MH - PIcontrol] and [MH-HIST] anomalies for each simulation 
in the ensemble (Section 3). Multi-model HIST-PI air temperature differences are approximately 0.3°C and 
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Figure 2.  Individual GDGT reconstructions evaluated in this work, and comparison with Climate Model Simulations. Simulated versus reconstructed tropical 
African temperature, plotted as anomalies relative to PI. GDGT-based temperature reconstructions from Lake Tanganyika (purple) and Lake Malawi (black/
gray), with bootstrapped calibration uncertainty (σ = ±0.4°C) as computed in Tierney, Mayes, et al. (2010). (A) LGM to PI, reconstructions only, (B) Holocene 
temperature reconstructions with comparison to model simulations. The brGDGT-based lake temperature reconstructions exhibit a larger amplitude of lake 
temperature change than do transient (CCSM3) and time-slice (PMIP3) GCM simulations of air temperature. All model time series and time slice data are 
displayed as anomalies relative to pre-industrial values. Box plots (cyan/black) show the inter-quartile (0.25:0.75) range (IQR) for the 13 PMIP3 simulations; 
outlier temperatures are shown in red. PMIP3 model uncertainties are approximately ±0.3°C, computed by calculating the standard deviation of the (MH-PI) 
or (MH-HIST) differences for the model ensemble (in terms of annual average air temperature) (and see Table 4). Model data are equilibrium simulations with 
1850 C.E. prescribed climate forcing (see citations, Table 2). Note the choice to compute anomalies relative to the PI is due to the fact that lake reconstructions 
(GDGT records) do not extend into the PMIP3 simulations' historical period. The reconstructions are coarse temporally compared to the model simulations. The 
two PI time periods for the reconstructions were taken as the average of 1750 B.P. (200 C.E.) to 250 B.P. (1700 C.E.) for Malawi (n = 3) and 2818 B.P. (−868 CE) 
to 1313 B.P. (637 C.E.) for Tanganyika (n = 6). CCSM3, Community Climate System Model, version 3; GCM, General Circulation Model; GDGT, glycerol dialkyl 
glycerol tetraethers; HIST, historical period; LGM, Last Glacial Maximum; MH, mid-Holocene; PI, pre-industrial; PMIP, Paleoclimate Model Intercomparison 
Project.

Site Lat/Long
Elevation  
(m a.s.l.) Time-span (ka)

Resolution (yr/
sample)

Calibration 
uncertainty

Analytical 
uncertainty Data source

L. Malawi 12.5°S, 36°E 500 25 - present 600 3.6°C < 1°C (Powers 
et al., 2005, 2010)

L. Tanganyika 6.5°S, 30°E 773 60 - present 250 3.7°C 0.3°C (Tierney et al., 2008)

Note: Calibration + analytical uncertainties applied to analysis in this paper is based on updated calibration uncertainty estimation presented in Tierney, Mayes, 
et al., 2010. GDGT, glycerol dialkyl glycerol tetraethers.

Table 1 
Details of the GDGT Temperature Reconstructions From Tropical Africa Examined in This work: Site, Location, Time Span, Temporal Resolution, Calibration 
Uncertainty (From Original Publications), and Analytical Uncertainty
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0.2°C for Tanganyika and Malawi, respectively. We additionally applied a calendar-correction to the MH 
simulations per the methodology described in Bartlein and Shafer (2019) to account for changes in month 
length and seasonality over time forced by changes in eccentricity and precession (Figure S2 and S3). The 
multi-model ensemble of PMIP time slice experiments is used to identify differences in radiation and heat 
transport, surface energy balance forcings and feedbacks. Climate fields were extracted for the grid cells 
which cover Lakes Tanganyika and Malawi, and post-processed to drive the lake proxy system model (Sec-
tion 2.3). (Note that we used all grid cells intersecting with lake area rather than a single grid cell corre-
sponding to core sites. However, comparing the grid cells used to the maps from each model, grid cells with 
negligible lake area were not included; only grid cells that collectively covered the majority of the lake area 
are selected).

Second, we used the TraCE-21ka (Transient Climate Evolution of the last 21,000 years) simulation for an 
additional comparison of a simulated surface air temperature time series with temperature reconstructions 
from Tanganyika and Malawi (see Figure 2b). The TraCE-21ka simulation was completed with the fully cou-
pled Community Climate System Model, version 3 (CCSM3), run without time acceleration at the T31_gx3 
resolution (He, 2011; Liu et al., 2009). The prescribed, time-varying forcings for this simulation are orbitally 
forced insolation and atmospheric greenhouse gas concentrations. Specified boundary conditions include 
ice sheet extent and height from the ICE-5G reconstruction, coastline changes resulting from rising sea lev-
els, and freshwater forcing from retreating ice sheets to the North Atlantic and Southern Oceans (He, 2011; 
Liu et al., 2009).

2.3.  Lake Proxy System Model

Proxy system models (PSMs) are now widely used tools for translating climate model variables (e.g., tem-
perature or precipitation) to a paleoclimate archive signal (e.g., water isotopes in ice cores), placing climate 
model data in the same units or reference frame as the measured proxy data (and see Evans et al., 2013; Dee 
et al., 2015, 2018, for a review). PSM simulations translate GCM output into quantities directly comparable 
to proxy measurements, more completely quantifying proxy uncertainty. The lake PSM essentially bridg-
es climate model output with the proxy data by modeling the lake system itself. Here, we use a recently 
developed lake PSM from the PRYSM framework (Dee et  al.,  2018). The PSM is fully described in Dee 
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Model name
Atm. resolution lat 

x lon (levels)
Ocn. resolution lat 

x lon (levels)
Model years 

(MH)
HIST ensemble 

members
Tanganyika 

grid cells
Malawi grid 

cells Reference

BCC CSM1.1 64 × 128 (26) 232 × 360 (30) 1–100 3 2 2 Wu et al. (2013)

CCSM4 192 × 288 (26) 384 × 320 (40) 1000–1099 3 4 5 Gent et al. (2011)

CNRM-CM5 128 × 256 (31) 292 × 362 (42) 1950–2049 3 4 3 Voldoire et al. (2013)

CSIRO Mk3.6.0 96 × 192 (18) 189 × 192 (31) 1–100 3 3 3 Rotstayn et al. (2010)

FGOALS-g2 60 × 128 (26) 196 × 360 (30) 920–1019 3 2 2 Li et al. (2013)

FGOALS-s2 108 × 128 (26) 196 × 360 (30) 1–100 2 3 4 Bao et al. (2013)

GISS-E2-R 90 × 144 (40) 180 × 288 (32) 2500–2599 3 3 2 Schmidt et al. (2014)

HadGEM2-ES 145 × 192 (38) 216 × 360 (40) 2061–2160 3 4 4 Johns et al. (2006)

IPSL-CM5A-LR 95 × 96 (39) 149 × 182 (31) 2301–2400 3 3 3 Kageyama et al. (2013)

MIROC-ESM 64 × 128 (80) 192 × 256 (44) 2330–2429 3 2 2 Watanabe et al. (2011)

MPI-ESM-P p1 96 × 192 (47) 220 × 256 (40) 1850–1949 2 3 3 Giorgetta et al. (2013)

MPI-ESM-P p2 96 × 192 (47) 220 × 256 (40) 1850–1949 2 3 3 Giorgetta et al. (2013)

MRI-CGCM3 160 × 320 (48) 368 × 364 (51) 1951–2050 3 5 4 Yukimoto et al. (2012)

Columns from left to right: model name, atmospheric resolution (lat, lon, levels), ocean resolution (lat, lon, levels), model simulation years for the Mid-
Holocene run, number of HIST ensemble members, number of model grid cells spanning Lake Tanganyika, number of model grid cells spanning Lake Malawi, 
and reference. The “model years” do not refer to calendar years C.E. or B.P.; rather, these are simply arbitrary run years chosen for the PMIP3 submission, and 
are provided here for reproducibility. PMIP, Paleoclimate Modeling Intercomparison Project.

Table 2 
PMIP3 Simulation Details for Models Used in This study
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et al. (2018); briefly, the PSM simulates physical processes that impact the lake energy and water balance 
and thus temperature, but also integrates and compounds multiple sources of uncertainty related to how 
proxy signals settle in sediments (e.g., bioturbation), dating, and proxy calibration.

The proxy system model requires several inputs including air temperature, humidity, wind speed, down-
ward long/shortwave radiation, and surface pressure; a schematic of the heat budget of the Lake PSM 
is given in Figure 3. To simulate changes between the MH and HIST periods, we first calibrated several 
lake-specific parameters in the lake model by driving the model for both Tanganyika and Malawi with rea-
nalysis data spanning 1979–2005 (ERA-Interim Reanalysis; Dee et al., 2011) and comparing simulated lake 
temperature, evaporation, and mixing depth to modern observations. Model parameters calibrated include 
the neutral drag coefficient (CD) and the shortwave radiation penetration depth parameter (η) (and see Dee 
et al., 2018, for more detail). The historical period in this paper is thus defined as the years spanned by the 
reanalysis product. The annual cycle was then computed using the PSM output to produce an average his-
torical year. To simulate changes in the MH, the 12-month annual cycle for the PMIP3-defined HIST and 
MH time slice data were extracted for all 13 models. For the MH simulations, we averaged 100 years of mod-
el output, and for the CMIP HIST experiments, we averaged across multiple realizations for each model in 
order to improve the statistical representation of the relatively short 1979–2005 time period (specifics of the 
PMIP3 simulations are detailed in Table 2). We scaled the lake model input fields by computing either the 
direct MH-HIST anomalies (temperature), or the percent change in the MH compared to HIST time slices 
[(MH − HIST)/HIST ⋅ 100] (all other input fields). We then applied those anomalies or percent changes to 
the average seasonal cycle in ERA-Interim (sometimes referred to as a δ method). Specifically, we computed 
the annual climatology of the reanalysis data, taking the average for each individual calendar month, and 
applied the (MH-HIST) δ′s of each model-simulated month to the modern climatology. This procedure 
generates one MH input file for the Lake PSM from each of the 13 PMIP3 model simulations. Each of the 
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Figure 3.  Schematic of Lake Heat Budget Terms. The figure details all the terms which alter the lake temperature 
profile in the Lake PSM. A full schematic showing all PSM variables (input/output) is available in (Dee et al., 2018). 
Approximate heat fluxes are given for each term in W/m2 (and see Figures 7 and 8). PSM, Proxy System Model.
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resulting 13 MH Lake PSM simulations share the same modern control simulation (i.e., the Lake PSM 
forced with ERA-Interim inputs). (Note that this process is designed to maintain consistency in the calibrat-
ed model averages during the historical period; the requirement of calibration of the lake model simulation 
using observations further motivates comparison of MH vs. HIST as opposed to MH vs. PI). Scaling modern 
reanalysis data to the simulated [Paleo-Modern] anomalies circumnavigates the climatological biases in the 
PMIP3 models (e.g., Lorenz et al., 2016).

2.4.  Model Performance

The Lake PSM simulates variables including water temperatures, lake mixing depth, and evaporation rate. 
We first assessed the performance of the model forced with ERA-Interim fields for both lakes (and see Dee 
et al., 2018). Modeled, observed (in situ (Eccles, 1974; G Kumambala & Ervine, 2010; Kumar et al., 2019) 
and satellite-derived (Kraemer et al., 2015; Wooster et al., 2001)) lake surface temperatures, evaporation 
rates, and mixing depths over the historical period are compared in Table 3. Note that for both lakes, the 
general climatology consists of a wet season during austral summer (∼ONDJFM) and a dry season during 
austral winter (∼AMJJAS). The PSM simulates seasonal variations in lake surface temperatures in general 
agreement with modern observations, though the simulated seasonal cycles in both evaporation and mixing 
depth in the wet season are underestimated (and this bias is larger for Lake Malawi - see relatively shallow 
simulated mixing depths). The large mixing depth bias for Lake Malawi is potentially driven in part by the 
fact that the Lake PSM used in this paper (Dee et al., 2018) is a one-dimensional model, and does not simu-
late lake dynamics such as wind-driven, north-south oscillations in thermocline depth in narrow lakes such 
as Malawi and Tanganyika, a key control on observed mixing depths (Eccles, 1974; Naithani et al., 2003). 
In particular, observations of mixing depth and lake surface temperature for Malawi given in Table 3 were 
taken at the north side of the lake; the one dimensional model does not capture lake seiches that may be 
more prevalent at the north end of Malawi than in central Lake Tanganyika. Finally, it is also possible that 
ERA-Interim input values are biased for Malawi, where fewer meteorological station observations are avail-
able, limiting our ability to accurately tune model parameters over the historical period.
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Climate/Lake variable Observed wet season (ONDJFM) Modeled wet season Observed dry season (AMJJAS) Modeled dry season

Tanganyika

In situ Surface Temperature (°C) 27.8 ± 0.7°C 28.7°C 23 ± 0.9°C 23.0°C

Satellite-Derived Surface Temperature (°C) 28.5°C 28.7°C 23.5°C 23.0°C

Evaporation (mm/day) 3 mm/day 4 mm/day 6 mm/day 4 mm/day

Mixing Depth (m) 50 ± 10 m 30 m 90 ± 10 m 85 m

Malawi

In situ Surface Temperature (°C) 28°C 30°C 22.6°C 22°C

Satellite-Derived Surface Temperature (°C) 28°C 30°C 23°C 22°C

Evaporation (mm/day) (see caption) 2 mm/day (see caption) 5 mm/day

Mixing Depth (m) 50 m 14 m 200 m 41 m

Available observations spanning the last few decades for Lake Tanganyika include surface temperature, evaporation, and mixing depths (Eccles, 1974; Kraemer 
et al., 2015; Kumar et al., 2019). Previous work documents in situ annual average evaporation rates at Malawi of approximately 4.5–5.2 mm/day (Eccles, 1974; 
G Kumambala & Ervine,  2010). Seasonal temperature variability is documented for Malawi in (Wooster et  al.,  2001). Note that wet season months span 
(ONDJFM); dry season months (AMJJAS). PSM, Proxy system model.

Table 3 
Comparison Between Observations From Lake Tanganyika and Lake Malawi Versus Lake PSM-Simulated Conditions, Forcing the Lake Model With ERA-Interim 
Reanalysis Data for the Region
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3.  Results
The warm temperatures across 6 ka reconstructed from GDGTs in Lake 
Tanganyika and Lake Malawi could result from a variety of processes, in-
cluding regional feedbacks that influence the local radiation balance, or 
changes in heat export from the tropics related to high latitude warming 
or cooling. We disentangle the impacts of both climate and proxy system 
(lake system) processes in the analyses that follow.

3.1.  Data-Model Comparison

To assess the agreement between proxy reconstructions and available 
GCM simulations, Figure 2 shows the mean temperature reconstruction 
for Lakes Tanganyika and Malawi superposed on two transient simula-
tions spanning the Holocene: The Community Climate System Model 
(CCSM3) Simulation of the Transient Climate of the Last 21,000 Years 
(TraCE-21ka; Liu et al., 2009), as well as the PMIP3 time slice estimates 
of annual-mean temperature anomalies (boxplots). Temperature anom-
alies for all data presented in Figure 2 were computed relative to the PI 
mean. Note the choice to compute anomalies relative to the PI is due 
to the fact that lake reconstructions (GDGT records) do not extend into 
the historical period. The reconstructions are coarse temporally com-
pared to the model simulations. The two PI time periods for the recon-
structions were taken (based on the most recent measurement points) 
as the average of 1750 B.P. (200 C.E.) to 250 B.P. (1700 C.E.) for Malawi 
(n = 3) and 2818 B.P. (−868 CE) to 1313 B.P. (637 C.E.) for Tanganyika 
(n = 6). Given the differences in dating resolution in the two reconstruc-
tions as well as their top-most dates, these two time periods were taken 
as reasonable choices to represent PI climate. Similarly, for the Mid-Hol-
ocene averages, we restricted the calculation to times falling in the inter-
val 4,500:6,800 B.P. (Tanganyika n = 10 data points, Malawi n = 5 data 
points). The MH average temperatures are extracted from each record 
over a 2000-year interval of core spanning multiple 14C ages within each 
section. Dating uncertainties for both sites are on the order of ±200 years 
(Johnson et al., 2002; Tierney et al., 2008). Each interval is bracketed by 
several dates with uncertainties much smaller than the averaging period 
length, making it unlikely that age uncertainties affect the analysis pre-
sented here.

The lake reconstructions and model simulations notably diverge due to the lack of simulated MH warming 
in model experiments compared to the GDGT reconstructions (Figure 2b). The models do not capture the 
magnitude nor the trend of MH warming observed in Lakes Tanganyika and Malawi across this boundary, 
though this assertion is contingent upon calibration uncertainties in the GDGT reconstructions (Table 1). 
Quantifying this difference, Table 4 lists (MH minus HIST) annual average air temperature anomalies for 
model grid cells centered over both lakes in the PMIP3 ensemble alongside GDGT-derived estimates, in-
cluding uncertainties; (MH-PI) values for the proxy records are also given for reference. Of the 13 PMIP3 
simulations we analyzed, 12 simulate colder MH temperatures compared to the historical at both lake sites; 
all 13 indicate a colder MH compared to PI. This contrasts with the lake temperature reconstructions (Fig-
ure 2b), which indicate MH temperatures in equatorial Africa 1–2.5° warmer than the pre-industrial (Ta-
ble 4). The one notable exception is HadGEM-2 (Hadley Centre Global Environment Model); the average 
air temperatures over Tanganyika are equal to those of the historical time slices in the MH, and hotter over 
Lake Malawi. HadGEM-2 is thus the only PMIP3 model showing MH temperatures similar to or warmer 
than the historical period.
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PMIP3 model
[MH-HIST] MAAT 
(°C) (Tanganyika)

[MH-HIST] MAAT 
(°C) (Malawi)

BCC −0.70 −0.45

CCSM −0.51 −0.37

CNRM −0.64 −0.49

CSIRO −0.44 −0.39

FGOALS-g2 −0.80 −0.71

FGOALS-s2 −0.91 −0.63

GISS −1.28 −0.51

HADGEM-2 0.0 +0.37

IPSL −0.76 −0.59

MIROC −0.34 −0.21

MPIp1 −0.70 −0.42

MPIp2 −0.79 −0.37

MRI −0.51 −0.29

PMIP3 [MH-HIST] MEAN −0.7 ± 0.31 −0.4 ± 0.27

PMIP3 [MH-PI] MEAN −0.3 ± 0.34 −0.2 ± 0.13

GDGT MH-PI +1.4 ± 0.4 +1.9 ± 0.4

PMIP3 Mid Holocene minus Historical Mean Annual Air Temperature 
at Lakes Tanganyika & Malawi. Top 15 rows show the change in PMIP3 
model estimates for the difference in MH and HIST air temperatures 
and the PMIP3 multi-model mean; bottom row indicates the estimated 
warming during the MH compared to the pre-industrial (PI) from GDGT 
reconstructions of both lakes. The GDGT reconstruction anomalies are 
reported for MH relative to PI becasue the proxy data does not extend 
through the historical period. Note GDGT difference is given with 
calibration uncertainty (σ  =  ±0.4°C) as computed in Tierney, Mayes, 
et al., 2010; the PMIP3 model uncertainties are computed by calculating 
the standard deviation of the [MH-PI] and [MH-HIST] differences 
for the model ensemble (in terms of mean annual air temperature). 
For reference, the PMIP3 HIST-PI multi-model air temperature mean 
is approximately 0.3°C for Tanganyika, and 0.2°C for Malawi. PMIP, 
Paleoclimate Modeling Intercomparison Project.

Table 4 
PMIP3 Mid Holocene Air Temperature Anomalies
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It is important to explicitly consider uncertainties for all data types in the comparison. Uncertainty bounds 
for the proxy estimates of MH-HIST temperature changes were derived using bootstrapped re-sampling of 
the calibration uncertainty (resulting in a value of σ = ±0.4°C) as computed in Tierney, Mayes, et al., 2010. 
PMIP3 model uncertainties are computed by calculating the standard deviation of the (MH-PI) and (MH-
HIST) differences for the model ensemble (in terms of mean annual air temperature), and are approximate-
ly equal to ± 0.3°C (Table 4). Finally, the Lake PSM uncertainty was calculated using a perturbed-parameter 
ensemble (Section  S2) and repeating the same method used for the PMIP3 simulations, calculating the 
standard deviation of the (MH-PI) and (MH-HIST) differences for the model ensemble of mean annual 
lake surface temperatures. The PSM uncertainties associated with selection of parameter value are small, 
∼±0.04°C.

3.2.  Impact of Lake System Biases

While the lack of data-model agreement could be attributed to shortcomings in climate model physics, it 
is also necessarily to evaluate biases imparted by the lake system. While GDGT proxies are potentially an 
unbiased indicator of lake temperature, issues may arise when lake temperature is assumed equal to air 
temperature. In particular, changes in lake water column surface energy fluxes or mixing can alter the air-
lake temperature relationship: lake temperatures may be damped or amplified compared to air temperature 
changes due to mixing (e.g., changes in thermocline depth) and the high specific heat capacity of water (Dee 
et al., 2018). Furthermore, Supplementary Table S0 indicates that while most of the African Great Lakes' 
measured surface temperatures are systematically higher than reanalysis air temperatures, there is large 
regional heterogeneity in the lake-air temperature offset in the modern (Green, 2009; Minale, 2020; Spigel 
& Coulter, 2019; Turner et al., 1996). Air-lake temperature relationships may also be non-stationary. Taken 
together, these uncertainties beg the question: How much (if at all) are lake temperature reconstructions 
biased relative to air temperature?

Reconstructed lake temperatures at ∼6 ka coincide with enhanced fall insolation during the MH. In the 
model simulations, the enhanced JJASON insolation results in elevated SON temperatures throughout 
the MH. This result is consistent for PSM simulations using both the calendar-corrected and un-corrected 
input data, indicating the correction is negligible in the context of this analysis (Figures S2 and S3). Fig-
ure 4 shows seasonal temperature anomalies across the African continent (MH minus historical), using the 
warmest MH PMIP3 simulation (Hadley Centre Global Environment Model version 2 (HadGEM2)). The 
stronger seasonality of air temperature during MH is apparent, with much colder temperatures over much 
of Africa during DJF and MAM, and warmer temperatures (by up to 3°C) during JJA and SON, especially 
in the great lakes regions.

These lakes gain most of their annual heat budget during austral spring (SON) after winter mixing (when 
lake heat budgets are sensitive to temperature fluxes), and thus several studies have invoked the increase in 
SON insolation to explain the elevated MH lake warming signal, focusing on processes such as mixing in-
ternal to the lake (Berke, Johnson, Werne, Schouten, & Sinninghe Damsté, 2012; Tierney, Oppo, et al., 2010, 
and see Section 3.3). Testing this directly, Figure 5 shows the seasonal cycle of both air temperatures and 
lake surface temperatures (generated using the lake PSM forced with HadGEM2 inputs) for both the MH 
and historical periods at Lake Tanganyika. The calendar-corrected MH data are also reproduced in all four 
panels of Figure 5 (red curve). Comparison with ERA-interim reanalysis air temperatures (dashed-dot black 
line, superimposed on Figure 5) indicates that despite bias in HadGEM2 air temperatures, which are higher 
than observations during winter months (November-March), the model does accurately simulate the ob-
served seasonal cycle for lake surface temperature (and see Table 2).

Annual average temperature changes for HadGEM2 are summarized in Table 5. The annual average HadG-
EM2 air temperatures simulated during both the historical and mid Holocene time slices are equivalent, 
∼ 22°C. However, as shown in Figure 5a., there is enhanced seasonality over equatorial Africa due to pre-
cessional forcing during the MH, and the region received more solar radiation in JJA/SON. Conversely, 
Figure 5b shows that lake surface temperatures are generally higher throughout ASOND in the MH, despite 
no change in annual average air temperatures between MH and HIST. This implies a non-stationary tem-
perature bias between air and lake temperature (the air-lake temperature offset changes in different climate 
states), arising due to lake heat budget effects alone.
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We repeated this analysis for the full PMIP3 ensemble and for both lakes, generating MH input files for the 
Lake PSM from each PMIP3 model using the approach described in Section 2.3. MH versus HIST air tem-
perature anomalies were compared to lake temperature anomalies (expanding Table 5 for the full PMIP3 
ensemble). The total lake amplification of air temperatures (MH minus HIST) is shown in Figure 6. This 
yields a multi-model average of 0.32°C hotter and 0.05°C colder lake surface temperatures than air temper-
atures for MH compared to HIST at Tanganyika and Malawi, respectively. The temperature bias is larger for 
Tanganyika (see Section 3.3).

BCC is a notable outlier in Figure 6, and shows a large cold bias for both lakes. While its air temperature 
anomalies are comparable to other models (Table  4), BCC's wind speed anomalies greatly exceed other 
models during the MH (a 124% increase), amplifying lake cooling (not shown). The model drives down the 
multi-model average by approximately 0.1°C, for reference.

To test the hypothesis that MH insolation forcing imparts a seasonal bias on the lake surface temperature 
reconstructions and to diagnose the energy balance changes involved, we examined the changes in the 
lake energy budget terms in HADGEM-2 (Figure  3): lake surface temperature, downwelling shortwave, 
downwelling longwave, upwelling shortwave, upwelling longwave, sensible heat flux, and latent heat flux 
(Figures 7 and 8).
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Figure 4.  HadGEM2-Mid Holocene Seasonal Temperature Anomalies (MH minus HIST, calendar-corrected), degrees Celsius [°C]. Top left: DJF. Top right: 
MAM. Bottom left: JJA. Bottom right: SON. HadGEM2, Hadley Centre Global Environment Model version 2; HIST, historical period; MH, mid-Holocene.
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The simulation's seasonal cycle indicates more longwave radiation and less net shortwave radiation (SW 
hereafter) at the lake surface (Figures  7 and  8, Figure  S1) and higher humidity during the wet season 
(∼ONDJFM). By contrast, the dry season (∼AMJJAS) is drier, sunnier, and windier. The timing of the wet 
season and the dry season is similar between Tanganyika and Malawi. The warmest lake temperatures 
happen at the end of the wet season and the coolest lake temperatures happen at the end of the dry season. 
Latent heat fluxes likely play an important role in this cycle. There is much more evaporation during the 
dry season than during the wet (a seasonal range of 175 W/m2 at Tanganyika). So, despite increased SW 
radiation during the dry season, increased evaporative cooling of the lake (drier, windier conditions) and 
decreased downwelling longwave (likely due to reduced cloud cover, see Section 3.3) would act to cool both 
Tanganyika and Malawi.

Figures 7 and 8 indicate coherent changes during the MH in the surface heat budgets: alongside higher 
lake surface temperatures during ASOND, we observe elevated downwelling SW radiation, small-to-negli-
gible changes in sensible heating, and enhanced upwelling longwave radiation. These changes are robust 
to changes simulated using calendar-corrected MH forcing (Figures S2 and S3). Interestingly, latent heat is 
less negative during AMJJASO in the MH simulation compared to HIST, indicating reduced heat loss and 
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Figure 5.  Annual Average Air Temperatures and modeled lake surface temperatures. HadGEM2-ES Mid-Holocene versus Historical Lake Model Simulation 
Results. (A) 2 meter Air Temperature (°C) from the HadGEM2-ES PMIP3 simulations for MH (maroon, dashed) and HIST (navy, solid), as well as the ERA-
Interim Reanalysis 2 m air temperatures for Tanganyika (1979–2017) (black, dash-dot). (B) Simulated lake surface temperature for MH (maroon, red) and HIST 
(navy). (C) Shortwave Radiation for MH and HIST at Lake Tanganyika, highlighting differences in seasonal shortwave radiation reaching surface during MH. 
(D) Mixing Depth Changes for the HIST and MH. In all panels, the MH is plotted in red, and modern period is plotted in blue. HadGEM2, Hadley Centre Global 
Environment Model version 2; HIST, historical period; MH, mid-Holocene.
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reduced evaporative cooling (Figures 7c and 8c, Figure S4) during this 
season. By contrast, for Lake Malawi (Figure 8), evaporation and latent 
heat release increase during SON, suggesting the enhanced evaporation 
and latent heat release cannot explain the enhanced warming at 6  ka. 
Rather, the variable which shows consistently higher (though modest ∼ 
20 W/m2) values during JJASON (austral winter, spring, i.e., the lakes' 
dry season) is downwelling SW radiation. The seasonality impact on lake 
temperature is asymmetric: The enhanced wet season warming is not ful-
ly offset by dry season cooling due to enhanced temperature seasonality 
and cloud cover change.

Furthermore, in the MH compared to PI, transitions between wet/dry 
seasons are shifted such that seasonal changes occur earlier in the year. 
Due to orbital forcing, incident SW radiation is elevated during JJA and 
SON in the MH for all 13 PMIP3 models (SI, Figure S1). Cloud feedbacks 
could potentially accentuate changes in August and September (the 
months with greatest orbital forcing at 6 ka) insolation through October 
and November.

In the simulations, lake surface temperatures do not directly track changes in annual average air tempera-
tures. Because GCMs simulate air temperatures only, it follows that a direct comparison between lake sur-
face temperature reconstructions and air temperature simulations from GCMs may contain uncertainties 
generated by lake system dynamics. The above analysis suggests a substantial amount of the warming re-
corded by lake GDGT archives may arise from the lake energy budget alone. The PMIP3 multi-model range 
indicates lake heat amplification due to enhanced MH JJA/SON heating may account for between 0–1.5°C 
of reconstructed warming observed in GDGT-based reconstructions, despite little-no change in annual av-
erage air temperatures. However, lake heat budget biases cannot reconcile all of the proxy-reconstructed 
warming during the MH. The multi-model average lake temperature bias compared to air temperatures is 
0.3°C, and only partially accounts for the data-model MH gap.

Revisiting our motivating question, how does the lake system itself alter the signal? the apparent lake heating 
bias shown in Figure 5 and 6 and the analysis discussed above suggests MH insolation forcing drives sea-
sonal biases causing enhanced JJA-SON heat uptake, contributing to observed MH warming in Tanganyika 
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Time slice Air/Lake temperatures

HISTAIR 21.9°C

MHAIR 21.9°C

Air Anomaly 0

HISTLAKE 26.5°C

MHLAKE 27.3°C

Lake Anomaly 0.8

Bias (Lake-Air) 0.8

Lake PSM uncertainties are approximately  ±0.04  C (Section  S2). 
HadGEM, Hadley Centre Global Environment Model.

Table 5 
HADGEM-2 Mid Holocene (MH) Versus Historical (HIST) Mean Annual 
Air Temperature and Lake Surface Temperature Simulated at Lake 
Tanganyika

Figure 6.  Lake temperature anomaly minus air temperature anomaly (LAKE-AIR) for all PMIP3 Models at (A) Lake Tanganyika and (B) Lake Malawi, MH 
minus HIST (ERA-Interim). The MH lake temperature anomalies are, on average, 0.32°C hotter and 0.05°C colder at Tanganyika and Malawi, respectively, than 
air temperature anomalies. Note that BCC anomalies are likely very low due to greatly increased wind speeds compared to other models during the MH, which 
amplifies lake cooling. MH, mid-Holocene; PMIP, Paleoclimate Model Intercomparison Project.
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and Malawi. This observation warrants further investigation, however: What are the explicit physical im-
pacts of enhanced solar radiation seasonality on the lake energy budget, and why does this elevate lake surface 
temperature? Furthermore, other lake-specific processes can affect the reconstructed temperature signal, 
such as mixing depth. These additional mechanisms for heightened sensitivity to enhanced MH JJA-SON 
insolation are discussed in Section 3.3.

3.3.  Coupled Climate-Lake Dynamics: Mixing Depths and MH Warming

We next characterize the impacts of enhanced seasonality in SW on lake heating in the MH. Relevant are 
the spatial changes over Africa in surface downwelling SW radiation (Figure 9), cloud cover, and precip-
itation (Figure 10). Figure 10 shows the seasonal average anomalies in cloud area fraction (MH minus 
HIST). Over the great lakes region, cloud cover is reduced in MH JJA and SON relative to HIST. Lower 
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Figure 7.  Lake Heat Budget Terms for the Lake Tanganyika simulation. HadGEM2-ES: MH (colors, dashed) versus HIST (black). All MH variables are 
calendar-corrected. (A) Lake Surface Temperature (°C), (B) Mixed Layer Depth (meters), (C) Latent Heat flux at lake surface (W/m2), proxy for evaporation, 
(D) Sensible heat flux at lake surface (W/m2), (E) Incident shortwave radiation (W/m2), (F) Longwave radiation (upwards from lake surface, W/m2), (G) Wind 
speed (m/s), (H) Downwelling longwave radiation (W/m2). HadGEM2, Hadley Centre Global Environment Model version 2; HIST, historical period; MH, 
mid-Holocene.
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cloud albedo leads to decreased reflection of incoming solar radiation; indeed, Figure 9 shows increased 
surface downwelling SW radiation corresponding to areas of lower cloud cover during the MH over Mala-
wi and Tanganyika (JJA-SON). Increased SW radiation in JJA and SON during the MH is consistent with 
increased insolation driving a larger seasonal northward shift of the Tropical Rain Belt, which causes in-
creased cloud cover north of the equator during the African Humid Period (AHP, Figure 10, MAM, JJA), 
and decreased cloud cover in the south at 6 ka (Chevalier et al., 2017; Shanahan et al., 2015). Precipita-
tion changes are small over both lake regions during JJA/SON (Figure 10), though the HadGEM2 model 
does simulate wetter (∼ + 1 mm/day) conditions over Tanganyika during the dry season (∼AMJJAS); this 
increase occurs despite the northward shift of the Tropical Rain Belt documented in previous work (Cos-
ta et al., 2014; Gasse, 2000; Shanahan et al., 2015). Essentially, the model simulation suggests changes 
in cloud cover can promote lake warming through increasing SW radiation incident at the lake surface 
contemporaneously with a wetter dry season and wetter conditions in general, in agreement with previ-
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Figure 8.  Lake Heat Budget Terms for the Lake Malawi simulation. HadGEM2-ES: MH (colors, dashed) versus HIST (black). All MH variables are calendar-
corrected. (A) Lake Surface Temperature (°C), (B) Mixed Layer Depth (meters), (C) Latent Heat flux at lake surface (W/m2), proxy for evaporation, (D) Sensible 
heat flux at lake surface (W/m2), (E) Incident shortwave radiation (W/m2), (F) Longwave radiation (upwards from lake surface, W/m2), (G) Wind speed (m/s), 
(H) Downwelling longwave radiation (W/m2). HadGEM2, Hadley Centre Global Environment Model version 2; HIST, historical period; MH, mid-Holocene.
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ous hydroclimate reconstructions from Tanganyika (e.g., Ivory & Russell, 2016; Tierney et al., 2008). By 
contrast, we note that at Malawi, previous works suggests conditions were substantially drier during the 
AHP (Finney & Johnson, 1991). While the two lakes do not share the same hydrologic history, similar 
changes in seasonal lake temperatures and mixed layer depth underscores the importance of shortwave 
forcing and cloud cover, which may overcome latent heat loss and other processes likely to differ at the 
two lakes.

Shortwave radiation directly impacts lake surface temperature, but also exerts a primary control on mixing 
depth (Hostetler & Bartlein, 1990). While mixing depth depends on multiple additional controls including 
surface temperature, evaporation, wind speed, and humidity, net downward SW radiation is the only varia-
ble notably enhanced in the MH. Due to the exponential decline of SW permeation with depth in the lake, 
an increase in surface incident shortwave radiation will heat surface waters more than deep waters, causing 
surface waters to become more buoyant than deeper layers and reducing mixing (see Dee et al., 2018, SI). 
Figure 5c shows the HadGEM2 MH and HIST simulations of SW radiation over Lake Tanganyika. As dis-
cussed above, and shown in Figure 5c., more SW radiation penetrates the lake surface in MAM–JJA in the 
MH relative to HIST; as a result, Figure 5d shows that in HadGEM2, lake mixing depths are approximately 
10–20 m shallower during MH JJA compared to historical.

The mixing climatology for both lakes are such that mixed layer depths are shallow (∼20 meters) during the 
wet season, and deepen through the dry season with maximum mixing in September. The mixed layer deep-
ens through the dry season due to both windier conditions and due to surface heat loss through evaporation. 
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Figure 9.  HadGEM2-ES: MH-HIST Surface Downwelling Shortwave Radiation Anomalies [CLEARSKY], in units of Watts per meter squared (W/m2); all MH 
variables are calendar-corrected. (a) DJF, (b) MAM, (c) JJA, (d) SON. HadGEM2, Hadley Centre Global Environment Model version 2; HIST, historical period; 
MH, mid-Holocene.
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Deepening of the mixed layer during the dry season further contributes to lake surface temperature cooling 
by transferring heat to deeper layers. Figure 5b indicates that deeper dry season mixing ends earlier (by 
about one month) in the MH (and see Figures 7b. and 8b.). This shift in the seasonal timing of lake surface 
temperature and mixing depth is most pronounced at the end of the dry season, which starts one month 
earlier during MH and leads to warm lake temperature anomalies during SOND.

This change in mixing depth seasonality occurs in both lakes, and is potentially important for understand-
ing the biases between lake and air temperatures. Namely, reduced mixing depth results in a reduction in 
the ability of the lake to store heat (thus warming the surface layer). Large (MH-HIST) lake surface tem-
perature anomalies onset in September and are maintained through November. Surface heating due to the 
large positive anomaly in SW radiation alone may cause the mixed layer depth to shallow. In any case, a 
shallowing mixed layer would act to perpetuate and enhance an initial surface heating.

In sum, during both the MH and HIST periods, mean annual temperature in the lake is set by the change 
in seasonal cloud cover and insolation (SW radiation). Reduced JJA-SON cloud cover and increased 
shortwave radiation at lake surface also directly impact mixing depth. PMIP3 simulations indicate shal-
lower mixed layer depths during the MH relative to HIST in September–October, driven in part by 
greater surface incident shortwave radiation. These changes in lake stratification and mixing compound 
the dry season warming observed during JJA-SON, maintaining elevated MH temperatures initiated by 
enhanced shortwave radiation in MAM–JJA throughout SON. The dry-wet season shift from deeper to 
shallower mixed layers occurs one month earlier in the MH, due to increased downward SW. Increased 
SW forcing heats and increases the buoyancy of surface waters, and would enhance direct SW effects 
on lake surface temperature via shallowing the thermocline and reducing the redistribution of heat to 
deeper layers.
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Figure 10.  HadGEM2 (MH-HIST) Cloud Area Fraction (%) (A, B, E, F) Anomalies; Seasonal Precipitation (C, D, G, D) Anomalies [mm/day]. All MH variables 
are calendar-corrected. (A, C) DJF, (B, D) MAM, (E, G) JJA, (F, H) SON. HadGEM2, Hadley Centre Global Environment Model version 2; HIST, historical 
period; MH, mid-Holocene.
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4.  Discussion: Unraveling Drivers of African Temperature Changes in the 
Holocene
This study evaluates temperature changes in paleoclimate reconstructions and GCMs, specifically the ac-
curacy of GCM hindcasts of past African temperature. The suite of PMIP3 models which performed a MH 
time-slice simulation were analyzed, and we evaluated model simulations which come closest to simulating 
regional reconstructed temperatures for Africa during the MH (HadGEM2). Output from the climate model 
simulations were then used to drive a lake PSM that simulates lake energy balance to identify processes that 
explain the timing and amplitude of observed African temperature signals. The PSM directly simulates lake 
temperature, and provides direct insights into the energy and mass transfers that drive those lake temper-
ature changes.

The lake PSM indicates that lake and air temperatures differ in their relative means, seasonality, and pat-
terns of change through time, indicating biases imparted by the lake system (Dee et al., 2018). Amongst all 
PMIP3 models, none simulate higher mean annual air temperatures in tropical Africa during MH compared 
to present-day (Section 3.1). However, multiple processes within the lake proxy system alter the input air 
temperature signal. Employing the Lake PSM energy balance model, we converted modeled air temperature 
and other environmental inputs to lake surface temperatures, and in doing so quantified biases between 
modeled air and lake surface temperatures during the relatively warm MH. Lake temperatures are warm-
er during SON at 6 ka, amidst enhanced seasonality due to precessional forcing (strongest in SON). This 
enhanced seasonality leads to greater heat uptake by the lakes and potentially biases the GDGT recon-
structions with respect to mean annual air temperature. We demonstrated that the simulated lake energy 
budget exhibits heightened sensitivity to enhanced MH JJA-SON insolation, with preferential heat uptake 
in JJA-SON (Section 3.2).

Previous studies have demonstrated that GCMs underestimate temperature changes in East African lakes 
relative to GDGT-based reconstructions (e.g., Loomis et al., 2017). Our work takes this a step further, eval-
uating temperature and energy transfers between air and lake surface temperature, as well as potential 
biases imparted by lake system dynamics. Despite the extended analysis pursued here, we find that while 
lake system biases can partially account for the model-data discrepancy (up to 0.8°C for some models such 
as HadGEM2-ES), energy budget biases alone are insufficient to explain the full 1–2.5°C of warming re-
constructed during the MH relative to PI in Africa. The multi-model lake PSM simulation mean provides a 
quantitative estimate of the offset between lake and air temperatures (+0.3°C) which at best resolves ∼30% 
of the observed model-data discrepancy, and at worst, closer to ∼12% (assuming a maximum warming 
of 2.5°C). Furthermore, we note that the PMIP3 HIST-PI air temperature mean is approximately 0.3°C 
for Tanganyika, and 0.2°C for Malawi; thus, the MH warming reconstructed in lake sedimentary archives 
is not only substantially different from what models show, but also exceeds the range of model HIST-PI 
differences.

This comparison demands a full account of uncertainties in the model simulations, proxy reconstructions, 
and the PSM. As mentioned above, GDGT calibration uncertainties vary by reconstruction and method, 
but can range from 0.4 to 3.7°C (e.g., Powers et al., 2005, 2010; Tierney, Mayes, et al., 2010, 2008). Even in 
a maximum error estimation compounding model (±0.3°C, this study), proxy (±0.4°C (Tierney, Mayes, 
et al., 2010)) and Lake PSM parameter uncertainty (±0.04°C, this study), the model-simulated lake tem-
peratures only graze the lower (+1°C) GDGT estimates of relative MH warmth. While there are undercon-
strained uncertainties in both the models and proxy data, assuming the reconstructions are accurate, it is 
difficult to imagine that these uncertainties are the primary cause of data-model discrepancy. The GDGT 
temperature trends, rather than the absolute values, indicate MH warming is robust, and lake system bias 
can only explain part of the reconstructed temperature change.

As discussed in Section. 3.3, Changes in net downward shortwave radiation, cloud fraction, and temperature 
anomalies driven by precessional forcing and enhanced seasonality jointly contribute to an amplified lake 
heating signal. Warmer lake surface temperature in MH SOND compared to HIST is due to: (1) Shallowing 
of mixed layer depths at the end of the dry season occuring earlier in the season (reducing lake heat storage 
at depth), (2) increased downward shortwave radiation due to orbital forcing accompanied by a decrease 
in cloudiness during the same months. At Tanganyika, the cumulative effects of decreased evaporation 
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and reduced latent heat loss throughout the dry season at MH compared to HIST could be contributing to 
warmer SOND temperatures. However, we do not observe a similar decrease in evaporation at Malawi, and 
Malawi exhibits identical SOND lake surface warming. Generally, we conclude that the mixed layer depth 
and SW effects are the primary drivers of SOND LST warming.

There are important differences between simulated lake climate changes at Tanganyika and Malawi, despite 
similarities in their seasonal cycle for lake surface temperatures. As noted in Section 3.1 and in Figure 6, the 
multi-model average shows (MH-HIST) lake-air offsets of 0.3°C warmer and 0.05°C colder for Tanganyika 
and Malawi, respectively. In contrast, the GDGT data (Figure 2b) suggest a similar mid-Holocene warming 
feature at both Tanganyika and Malawi. This modeled difference between the two lakes can potentially be 
attributed to differences in shortwave forcing and cloud cover. In HadGEM2-ES, shortwave forcing is ele-
vated in MAM, JJA and SON over Tanganyika, but only in JJA/SON at Malawi (Figures 7–9); meanwhile 
both lakes show reduced or no change in cloud cover for all three seasons (Figure 10). The total shortwave 
forcing differs seasonally between the two sites (Figures 7 and 8). This difference might explain the large 
MH shoaling of the mixed layer in Tanganyika compared to Malawi, though the bias in the Lake PSM in 
simulating Malawi's modern mixed layer depth is large (Table 3). Furthermore, Figure S4 indicates a large 
increase (decrease) in evaporation and thus surface cooling (warming) during the MH for Malawi (Tangany-
ika), which likely contributes to Malawi's simulated colder temperatures. Further diagnostics are required 
to fully deconvolve this difference.

Nonstationarity in seasonal mixing depths may also generate biases in GDGT temperature reconstructions 
during the MH. In the present day, the concentrations of GDGT-producing Thaumarchaeota in the water 
column of Lakes Malawi and Tanganyika are low in the surface mixed layer and increase in the thermo-
cline, below the lakes' chlorophyll maxima and in the lakes' suboxic zone and oxycline (Kumar et al., 2019; 
Schouten et al., 2012). Both theory and our simulations suggest that during the MH, as the lakes warmed, 
the thermocline shoaled. This is consistent with ongoing changes in Lake Tanganyika, where anthropo-
genic warming has resulted in a shoaling of the thermocline and oxycline (Cohen et al., 2016). Kraemer 
et al. (2015) noted that changes in lake temperature during the last century inferred from TEX86 (Tierney, 
Mayes, et al., 2010) overestimated observed and modeled temperature changes, and suggested that shoaling 
of the oxycline, where Thaumarchaeota reside, exposed the GDGT-producers to warmer water within the 
surface mixed layer. This would increase the amplitude of warming recorded by TEX86. However, shoal-
ing of the thermocline, such as we simulate during the mid-Holocene, could have the opposite effect–ex-
posing Thaumarchaeota to colder, deeper waters–if the oxycline remains stationary. Furthermore, Hurley 
et al. (2016) demonstrate that if Thaumarchaeota GDGT producers become ammonium-starved in a par-
ticular season, they produce higher TEX86. Thus, the question is how changes in the depth and temperatures 
within the thermocline, oxycline, chlorophyll maximum, and ultimately the depth of Thaumarachaeotal 
GDGT production interact during intervals of climate change. While shifts in mixed layer depth are simu-
lated by multiple models, it is at present impossible to conclusively identify the impacts of those changes on 
the proxy records without an independent proxy for lake surface temperature, mixed layer, and/or oxycline 
depth. At present, few proxies for mixing depth are available alongside these records. Regardless, simulated 
changes in mixed layer depth during the MH could cause non-stationary responses of GDGT-inferred tem-
perature to surface warming. Nevertheless, uncertainties generated by non-stationarity in mixing depths 
will obscure the “true” heating signal in GDGT reconstructions (Kraemer et al., 2015; Kumar et al., 2019; 
Zhang & Liu, 2018; Zhu et al., 2017). Advances developing PSMs of intermediate complexity for TEX86 in 
large, stratified lakes are needed to refine our understanding of these effects.

It is important to contextualize the data-model comparison presented here with temporally coherent pale-
oclimate archives. Some global syntheses indicate cooling from 6 to 0 ka (Kaufman, McKay, Routson, Erb, 
Datwyler, et al., 2020; Kaufman, McKay, Routson, Erb, Davis, et al., 2020; Marcott et al., 2013), though recent 
work highlights significant seasonal biases in these reconstructions at higher latitudes (Bova et al., 2021). 
Globally, glaciers were advancing during this time in both Greenland and at lower latitudes, such as the 
Alps (Liu et al., 2014; Marcott et al., 2013; Marsicek et al., 2018). The observed warming reported in the Tan-
ganyika and Malawi reconstructions is observed in other East African rift lakes, including Turkana (Berke, 
Johnson, Werne, Grice, et al., 2012; Linke et al., 2018; Loomis et al., 2012). While many of these proxy types 
respond to multiple climate drivers, we cannot rule out the possibility, based on these multi-proxy lines of 
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evidence, that tropical Africa may have warmed by 1–2°C during the MH, a warming much larger than 
the historical period. These other proxy data also disagree with the relatively quiescent model simulations 
(especially transient simulations), which do not indicate abrupt changes in temperature across the MH (e.g. 
Figure 2b).

We note additional important caveats of this work. In both Lake Tanganyika and Lake Malawi, oscillation of 
the thermocline results from southerly winds that generate lake surface water highs at the northern sides of 
the lakes, which then flow southwards when the winds subside. This creates an oscillation with a period of a 
few weeks and an amplitude of several tens of meters (e.g., Naithani et al., 2003), and likely impacts mixing 
depths in these large lakes. The Lake PSM used in this paper (Dee et al., 2018) is a one-dimensional model, 
oversimplying processes in long, deep, narrow lakes such as Malawi and Tanganyika, where thermocline 
dynamics play an important role in the lake heating budgets. Additional modeling using a three-dimen-
sional coupled lake model would incorporate water column mixing associated with thermocline response 
to wind fields. This may strongly impact mixing depth and lake surface water temperature. The use of such 
three dimensional lake models (e.g., Laval et al., 2003; León et al., 2007) is an important next step forward 
in the model-data comparison.

Additionally, while GDGT records are not seasonally resolved, they may be seasonally biased; transient 
simulations show particularly elevated SON temperatures in the MH (SI Figure S5), exceeding annual mean 
temperatures by ∼ 1°C. If GDGT producers are selectively recording lake temperatures in specific months, 
this may contribute to the data-model discrepancy reported in this work. Research forcing the Lake PSM 
sensor models with seasonal temperatures may shed light on the contributions (or lack-thereof) of potential 
seasonal biases.

Finally, the PMIP4 mid-Holocene multi-model ensemble experiments were recently published (Kageyama 
et al., 2020), and initial evaluation performed by Brierley (2020) show that MH air temperatures in Africa 
are cooler for PMIP4 than for PMIP3. This is due to the fact that PMIP4 employs lower (and more realistic) 
greenhouse gas concentrations compared to PMIP3. Thus, we expect that the model-data discrepancy we 
document will only increase when PMIP4 results are considered. This work also considers all models in 
the PMIP3 ensemble regardless of their climatological biases relative to observations. Differences between 
models' treatment of vegetation and aerosols likely drive large simulation spread, and warrant further in-
vestigation (e.g., Liu et al., 2018). Our future planned analysis of the PMIP4 ensemble will assess the fidel-
ity of the models in reproducing modern climatology in east Africa in order to generate ensemble means 
weighted by model skill. This will allow us to deduce the model physics that give rise to stronger model-data 
agreement.

5.  Conclusions
We evaluated temperature reconstructions from the African tropics, and compared these data with model 
simulations to assess the dynamics and drivers of African temperature changes over the Holocene. Studies 
such as this characterizing past temperature changes and their governing mechanisms are fundamental to 
understanding future climate change. Further, surface temperature is one of the few climate variables that 
we can quantitatively reconstruct with reasonable accuracy and precision. Climate models are thought to 
have greater skill in predicting changes in temperature than hydroclimate variables such as precipitation, 
yet there are few data-model comparison studies to test this assumption for tropical continental air temper-
atures. This work analyzes two lake temperature reconstructions from Africa and re-evaluates mean-state 
temperature transitions resolved in these records using a new PSM. The Lake PSM elucidates relationships 
between lake and air temperatures (i.e., energy and mass transfers). We show that impacts on the relation-
ship between lake temperature and air temperature can be imparted by lake processes, and these impacts 
can be quantitatively simulated and partitioned away from the primary climate signal. This enhanced da-
ta-model comparison provides more realistic constraints on climate model simulations of the past to iden-
tify potential shortcomings that need to be addressed to accurately project future temperature change in 
Africa.

Ensemble climate model simulations predict African warming of up to 5°C by 2080–2099 in an RCP8.5 
high emissions scenario (IPCC, 2013); this will severely stress society and ecosystems (Boko, 2007; James 
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& Washington, 2013). Air temperature affects human health, directly through heat waves causing cardiac 
and respiratory distress, and indirectly through its impact on disease transmission, drought, agriculture, 
and ecosystems. Evaluating climate model simulations spanning past warm climates facilitates validation 
of projections of future warming performed with the same climate models (Taylor et al., 2012), allowing 
us to systematically evaluate model performance. The temperature reconstructions evaluated here suggest 
substantial sustained, long-term warming during the MH (Figure 2b.); while it is possible these warming 
events in the GDGT record may be an under-constrained artifact of the proxy system, the warming is still 
notably lacking in current-generation climate models. Careful evaluation of these warming events, such 
as that of the 6 ka heating event, is crucial for contextualizing patterns and amplitudes of African climate 
change in the past and future.

In forthcoming research, we hope to amass a greater number of African temperature records for a more 
complete and heterogeneous view of African temperature evolution. Extension work should synthesize a 
more geographically comprehensive set of continental temperature reconstructions from Africa and evalu-
ate these reconstructions using lake proxy system models, providing a more robust evaluation of the poten-
tial for rapid tropical temperature change. This information is needed to elucidate the drivers of African cli-
mate changes, provide better statistics constraining continental African temperature sensitivity, and enable 
more robust predictions of climate change in Africa for scientists and policy makers.

Data Availability Statement
CMIP5/PMIP3 simulations are publicly available via https://esgf-node.llnl.gov/search/cmip5/. The TraCE-
21ka EXP is publicly available via earthsystemgrid.org. Lake PSM code is freely available via Zenodo at 
https://zenodo.org/record/3890080#.YHW0VEhKhBw, as well as Github https://github.com/sylvia-dee/
PRYSM/tree/2.0 with DOI: https://doi.org/10.5281/zenodo.3890080.
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